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The ternary Goldbach problem
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Leonhard Euler (1707–1783) – one of the greatest
mathematicians of the eighteenth century and of all
times – often corresponded with a friend of his, Chris-
tian Goldbach (1690–1764), an amateur and poly-
math who lived and worked in Russia, just like Euler
himself. In a letter written in June 1742, Goldbach
made a conjecture – that is, an educated guess – on
prime numbers:

Es scheinet wenigstens, dass eine jede Zahl,
die größer ist als 2, ein aggregatum trium nu-
merorum primorum sey.
It seems [ . . . ] that every positive integer
greater than 2 can be written as the sum of
three prime numbers.

In this snapshot, we will describe to what extent the
mathematical community has resolved Goldbach’s con-
jecture, with some emphasis on recent progress.
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1 Weak and strong Goldbach conjecture

In the time since Goldbach’s original statement of his conjecture, its wording
has changed to say “greater than 5” instead of “greater than 2”, since we no
longer consider 1 to be a prime number. It has long been customary to split
this conjecture into two halves:

• The weak (or ternary) Goldbach conjecture, which states that every odd
integer n greater than 5 can be written as the sum of three primes;

for example: 11 = 3 + 3 + 5, 21 = 2 + 2 + 17
• The strong (or binary) Goldbach conjecture, which states that every even

integer n greater than 2 can be written as the sum of two primes.
for example: 10 = 5 + 5, 36 = 13 + 23

As their names suggest, the strong conjecture implies the weak one. (In order to
express an odd number n ≥ 5 as the sum of three primes, subtract 3 and obtain
an even number n− 3 ≥ 2. If the strong conjecture is true, we can express n− 3
as a sum of two primes p1, p2; thus, n = (n− 3) + 3 is the sum of the primes
p1, p2 and 3. As Euler himself pointed out to Goldbach, the strong conjecture
also implies (and is implied by) Goldbach’s original statement.

The history of the problem can be looked up in [1, Ch. XVIII].
A brief summary: in the first half of the seventeenth century, René Descartes

(1596-1650) made a statement similar to Goldbach’s in a manuscript that would
be published only posthumously (in 1901!). During the nineteenth century,
there was some computational work (checking the conjecture for small integers
by hand), but little real progress.

The strong conjecture is still out of reach. In 2013, I finished the proof of
the weak Goldbach conjecture. I had worked on it for several years.

2 Proof of the weak Goldbach conjecture

The proof builds on the foundations laid at the beginning of the twentieth
century by Hardy, Littlewood and Vinogradov. In 1937, Vinogradov proved
[10] that the conjecture holds for all odd numbers larger than some constant
C. (Hardy and Littlewood had already shown the same, under the assumption
that the Generalized Riemann Hypothesis1 (GRH) is true. The GRH is a long-
standing standard conjecture that is still unproved.) Since then, the constant C
has been specified and gradually improved, but the best (i.e., smallest) available

1 More information on the Generalized Riemann Hypothesis can be found in the Snapshot
“Dirichlet Series” (No. 6/2014).
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Figure 1: Euler and Goldbach’s letter. It seems non-trivial to find a genuine
portrait of Goldbach.

value of C was

C = e3100 ≈ 2 · 101346

(Liu-Wang [8]), which was way too large. We simply cannot hope to check the
first 101346 cases by computer – in fact, it is highly doubtful that any earthly
or alien civilization that will ever exist could ever check, say, 10120 cases of
any conceivable statement one by one: the number of picoseconds since the
beginning of the universe is less than 1030, whereas the number of protons in
the observable universe is currently estimated at ∼ 1080, meaning that even
parallel computing and galactic dictatorship wouldn’t be enough.

I managed to bring C down to 1027. The binary Goldbach conjecture had
already been checked by computers up to 4 · 1018 [9]; using that fact, one
can check the ternary Goldbach conjecture up to 1027 in a few hours on a
modern desktop computer. (In fact, D. Platt and I [6] had already checked it
up to 8.8 · 1030 on parallel computers.) This means the ternary (that is, weak)
Goldbach conjecture is now proven for all (odd) integers.

It is clear why a brute-force computation can check a conjecture such as
Goldbach’s only for n smaller than some constant C: a computation has to be
finite. But why would a mathematical proof ever give a bound valid only for n
larger than a constant C?
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3 Methods used to prove the theorem

This is in fact typical of analytical proofs, i.e., proofs using tools such as Calculus,
Fourier analysis, etc. Such a proof usually tells you more than just the fact that
an integer can be written in a certain way (here: as a sum of three primes). It
actually gives you an estimate for the number of ways in which this is possible.
The estimate takes the following form: the number of ways to write an integer
n in a certain way is equal to a “main term” – some function f(n) – and an
“error term” – something that may be positive or negative, but whose absolute
value is shown to be smaller than another function g(n). If f(n) > g(n), this
shows that there is at least one way to write n as the sum of three primes.

Here is a highly simplified example: say you were able to prove an estimate
with f(n) = n2, g(n) = 1000n3/2. Then we succeed when f(n) > g(n), and this
happens for all n > C, where C = 106.

This is what usually happens: one manages to show that f(n) is larger than
g(n), but only once n gets large enough. The case of small n needs to be checked
by hand (that is, by computer). The aim is thus to make the error term g(n)
as small as possible; this will make C smaller. (We can also “rig the game”
(say, by giving a greater weight to some primes) so that the main term becomes
larger relative to the error term; such “rigging” also presents other advantages,
especially if the weights are continuous.)

What are the main analytical tools used? Some readers are familiar with
Fourier analysis, i.e., the practice of decomposing a function f of time into sine
waves of different frequencies. In fact, we do that every day, when we tune
an analog radio, or when our brain picks up a musical note from several notes
being played at the same time.

In fact, Fourier analysis is more general than that: f need not be a function
of a continuous variable such as time. In particular, even if f is defined just
on the integers, we can still decompose it into frequencies. It turns out to be
natural to draw these frequencies on a circle and label them with real numbers
from 0 to 1, just like, in the usual case, we put frequencies on a line and give
them labels such as “88 Mhz” or “A = 440Hz”. (This is why the general stategy
we are describing is called the circle method.)

In our case, we can define f to be the function such that f(n) = 1 when n is
a prime, and f(n) = 0 when n is not a prime. (In practice, we actually use a
slightly more complicated version of this: we want f(n) to decay continuously
when n grows, for one thing.) Why would it be helpful to decompose such a
function into functions of the form n 7→ sin(2παn) or n 7→ cos(2παn)?

An additive problem, such as Goldbach’s, can be restated in terms of con-
volutions. The (additive) convolution g ∗ h of two functions g, h is a new
function constructed from g and h. At a number n, it is defined to be the sum
of g(m1)h(m2) over all pairs of integers m1, m2, such that m1 + m2 = n. In
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Figure 2: The dial in a true number theorist’s radio.

formulas, this reads

(g ∗ h)(n) =
∑

m1+m2=n

g(m1)h(m2).

Thus, for the function f we just defined, if we showed that (f ∗ f)(n) > 0, then
this would imply that n can be written as the sum of two primes in at least one
way, whereas if we show that (f ∗ f ∗ f)(n) > 0, this will imply that n can be
written as the sum of three primes in at least one way2 .

One of the basic properties of a decomposition into frequencies is that
a convolution behaves very nicely under such a decomposition: the Fourier
transform of g ∗ h (that is, its decomposition into frequencies) is just the
product of the Fourier transform of g and the Fourier transform of h. (A
Fourier transform f̂ is a function from the space of frequencies (in our case, the
circle) to the complex numbers; it tells you “how much” of n 7→ sin(2παn) or
n 7→ cos(2παn) is present in f , i.e., the strength of what you hear when you set
your radio’s dial to α.)

It turns out that f̂(α) is particularly large when α is close to a rational
number with small denominator (such as the numbers drawn in Figure 2). (This
is, if you wish, analogous to how a radio signal gets strong when you move the
dial close to the frequency of a radio station.) The bits of the circle close to
such rational numbers are called major arcs; the rest is called minor arcs. Ever
since Vinogradov, the basic idea has been to estimate f̂(α) as accurately as
possible for α on the major arcs, and to show that it is small outside them. This
then allows you to estimate an integral that you know is equal to (f ∗ f ∗ f)(n).

2 Can you figure out why that is?
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This, incidentally, is the point at which the basic approach breaks down for
the binary problem. Major arcs are called “major” not because they are large
(they aren’t) but because they make the major contribution to the integral of
f̂(α)3 over the circle. If, instead, you are integrating f̂(α)2 (as you have to
do when you are summing 2, rather than 3, primes), the contribution of the
“major” arcs isn’t major any longer – it gets overwhelmed by the integral of
|f̂(α)|2 over the minor arcs: squaring amplifies peaks, but not nearly as much
as cubing does. In order to go further, we would actually have to be able to
estimate f̂(α) rather precisely on the minor arcs, and nobody yet knows how to
do that.

4 Conclusion

This is the basic framework. What is new in my work? I had to redo the proof
from scratch and find improvements in every part: the estimates for f̂(α) on
the major arcs, the upper bounds on the minor arcs (the hardest part, from my
perspective), and also the way in which the two are put together. Several of the
techniques I had to improve or develop should be useful elsewhere in number
theory or even in applied mathematics.

Some of this can be found in a longer, more detailed exposition I wrote
a couple of months ago. The present text is partly based on that, with the
difference that the mentioned text focuses on the novelties within the proof.
The first version of that other exposition appeared in my blog (http://valuevar.
wordpress.com); later versions were published (in Spanish and French) in [7] and
[2]. The same exposition served as a basis for a more detailed article that will
appear in the Proceedings of the International Conference of Mathematicians,
in connection with my talk in Korea in August 2014. Go read any of these
versions. Whoever wishes to get the full picture can read my papers [4], [3], [5],
which I have tried to make as clear and readable as I could.
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