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This is a snapshot about operator theory and one
of its fundamental tools: the singular value decom-
position (SVD). The SVD breaks up linear transfor-
mations into simpler mappings, thus unveiling their
geometric properties. This tool has become impor-
tant in many areas of applied mathematics for its
ability to organize information. We discuss the SVD
in the concrete situation of linear transformations of
the plane (such as rotations, reflections, etc.).

1 What is operator theory?

Operator theory is the study of transformations of infinite-dimensional spaces
and is a natural framework for analyzing a variety of problems inspired by
physics. One such problem is the Dirichlet problem: if you heat up the edge of
a metal plate, what will be the temperature at a given point in the center? This
is an infinite-dimensional problem because the temperature distribution on the
edge of the plate has an infinite number of parameters. This is not obvious, but
you could imagine that you have the freedom to adjust the temperature at any
given point on the edge of the plate without changing the temperature at other
points too much and so there are an infinite number of parameters to play with.
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In addition to the Dirichlet problem and related problems, operator theory
most notably can be used as a mathematical framework for quantum mechan-
ics. 1

Discussing what infinite-dimensional spaces are is beyond the scope of this
snapshot, but it is still possible to give an idea behind at least one result from
operator theory: the singular value decomposition (SVD). This is an old but
powerful result that allows one to uncover the precise geometric behavior of a
linear transformation. The SVD has become popular and even famous [2] in
recent years because it can be used as a “blackbox algorithm”. Plug your favorite
data into an array of numbers or a matrix, find the singular value decomposition,
and voilà! You may just uncover hidden patterns and connections in your data
with little human involvement.

2 Linear transformat ions

The singular value decomposition is about breaking up so-called linear transfor-
mations into simpler pieces that give a clear idea of their geometric properties.
To describe it, we will look at the simplest interesting situation of linear trans-
formations in two dimensions.

Some simple examples of linear transformations of the plane are rotations,
reflections, stretchings/shrinkings, and projections; see Figure 1, which shows
the unit square, the result of a rotation, and the result of a stretching in the
vertical direction and a shrinking in the horizontal direction.

Figure 1: The transformed unit square

Essentially, a linear transformation sends the point (0, 0) to (0, 0) and sends
parallelograms to parallelograms. In algebraic terms, a linear transformation

1 A brief introduction to quantum mechanics and more on the subject can be found in
the following snapshot: Alain Valette, The Kadison-Singer problem, Snapshots of modern
mathematics (2014), no. 8, 1–5.
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takes any point (x, y) in the plane and transforms it to (ax + by, cx + dy), where
a, b, c, d are constants: (

x
y

)
7→
(

ax + by
cx + dy

)
.

The shearing transformation in Figure 2 is given by(
x
y

)
7→
(

x
x + y

)
.

Figure 2: Shearing the unit square

This transformation seems quite simple, but when we examine what it does
to the unit circle instead of the unit square, its behavior looks complicated as
in Figure 3.

Figure 3: Shearing the unit circle
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3 The singular value decomposi t ion

Is it possible to break up our shearing transformation into simpler transforma-
tions like rotations, reflections, and stretchings/shrinkings? The singular value
decomposition tells us exactly how to do this and it tells us that every linear
transformation can be broken down into a rotation/reflection followed by simple
stretching/shrinking followed by a rotation.

We will illustrate this with the shearing transformation. In Figure 3, the
black lines on the circle indicate the lines through (0, 0) which get stretched the
most and the lines stretched the least by the transformation as shown on the
ellipse. If we follow what happens to these lines we can give a nice description
of the shear transformation. Figure 4 shows how this is done. First, rotate the
circle to put the black lines on the axes. Next, stretch in the horizontal and
vertical directions by the appropriate amount. The factors that you stretch by
are called the singular values of the transformation, and this is where the SVD
gets its name. Finally, rotate the ellipse into place.

Figure 4: Singular value decomposition

The SVD is extremely general. Linear transformations in three dimensions
turn spheres into ellipsoids (see Figure 5), and a similar process can be used to
break it into rotation/reflection followed by stretching followed by rotation.

Figure 5: Three-dimensional linear transformation
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The SVD in fact works in any number of dimensions and even in infinite
dimensions, although in infinite dimensions you must be a little more careful
about what you mean by a rotation or a stretching because of the following
fact: in infinite dimensions rotations are replaced by isometries, that is by
linear transformations that preserve length. Unfortunately, isometries in infinite
dimensions can transform the entire space onto a proper subset of itself! 2 An
important example of an infinite-dimensional space is the collection of all infinite
sequences of real numbers

(x1, x2, x3, . . .)

which also satisfy the condition that x2
1 + x2

2 + x2
3 + . . . < ∞. 3 The length of

such a sequence is defined as the number
√

x2
1 + x2

2 + x2
3 + . . ..

An example of an isometry on this space is the shift operator

(x1, x2, x3 . . .) 7→ (0, x1, x2, x3, . . .).

The shift is an isometry, since the length of the sequence (0, x1, x2, x3, . . .) is
02 +x2

1 +x2
2 +x2

3 + . . ., that is, equal to the length of the sequence (x1, x2, x3 . . .).
You will notice that the shift operator transforms the whole space onto the
proper subset of itself consisting of sequences with first entry 0. So, isometries
in infinite dimensions do more than just rearrange the space, they actually can
push the space away while paradoxically staying inside itself. Even though
isometries are much more complicated in infinite dimensions, there is a rich
theory behind them – there is even a rich theory behind the simple looking shift
operator above – so the SVD remains a useful tool even in this setting.

4 Fur ther reading

We have just scratched the surface of the SVD. A longer article at a similar
level discussing the singular value decomposition which we recommend is [1].
Wikipedia has a nice discussion of the SVD [3].

2 Meaning that if you apply the transformation to the whole space, what you get might not
be the whole space, but possibly less.
3 This means that one requires that there exist a real number (symbolically denoted by
x2

1 + x2
2 + x2

3 + . . .) such that the finite sums x2
1 + x2

2 + x2
3 + . . . + x2

n come arbitrarily close to
it, but never exceed it. Any sequence that has only finitely many entries different from zero
fulfils it, since after finitely many additions you only add zero to the sum. But there are also
many other sequences (x1, x2, x3, . . .) that fulfil x2

1 + x2
2 + x2

3 + . . . < ∞.
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