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Uncer tainty as an ingredient
in f inancial model ing

Ralf Korn

Uncertainty – as opposed to risk – is used to describe
events to which we are not able to assign a probability
due to lack of information. Instead of assigning a
probability to an uncertain event, we only assume
that such an event is possible or that its probability
is within some range. We illustrate the effects of the
inclusion of uncertainty in modeling by looking at
simple cases of an optimal investment problem.

1 A l i t t le bi t of randomness

As financial markets are not predictable, a model based on probabilities is a
suitable one for their future evolution. Thus, before we start the modeling, we
provide some basic concepts and facts of probability theory.

A real-valued random variable X assigns a real number to the outcome of a
stochastic experiment (such as coin tossing or playing dice). It is fully described
by its (probability) distribution function

F (x) = P(X ≤ x), x ∈ R,

which is the probability that the value of X does not exceed x. Examples are
discrete distributions where the distribution function only increases in jumps,
such as the uniform distribution on {1, 2, 3, 4, 5, 6} in playing dice where each
of these values has a probability of 1/6 to occur while all the remaining values
have a total probability of zero.
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Another example are distributions with a (probability) density function f(x).
These are non-negative functions with an integral of 1 1 . The distribution
function is then

F (x) =
∫ x

−∞
f(z)dz.

The most popular distribution with a density is the normal distribution with
mean µ and variance σ2 (for short, N(µ, σ2)) and density

f(x) = 1√
2πσ2

e− (x−µ)2

σ2 .

As it is central in financial modeling, we present the graph of f(x) in Figure 1.
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Figure 1: The density function f(x) of the N(1, 2)-distribution.

A random experiment evolving in time is called a stochastic process, denoted
X = (Xt, t ≥ 0), where each Xt is a (real-valued) random variable. Practical
examples of a stochastic process can be the temperature curve over a day or
the evolution of a stock price over time.

The most important stochastic process for us is Brownian motion, which
we denote Wt for t ≥ 0. It is a stochastic process starting at W0 = 0 that
generates continuous paths (such that one can draw them without lifting the
pen). The changes follow a normal distribution Wt − Ws ∼ N(0, t − s). Further,
the changes are assumed to be independent of the past, that is, of the part
of the Brownian motion before time s. Note in particular, that a Brownian
motion Wt is N(0, t)-distributed. Its typical behavior is illustrated in Figure 2.

1 This is a continuous analogue of summing over all possibilities.
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Figure 2: Three simulated paths of a Brownian motion Wt(ω), 0 ≤ t ≤ 1.

Of course, we can only simulate a Brownian motion discretely, that is,
simulate the steps independent of the past and then interpolate linearly between
them. The three paths in Figure 2 are so irregular, that they do not have a
time derivative.

While this non-differentiability sounds a bit obscure, it proves to be ideal
for financial modeling. If the path of a stock price were differentiable, then
we would know whether the price increases or decreases in the next moment,
depending on the sign of the derivative. Thus, if we want continuous paths for
a stock price, the use of a nowhere-differentiable stochastic process is a must.

The non-differentiability of Brownian motion requires the use of Itô calculus
(see for example [3]) as a key tool in financial modeling. However, its detailed
explanation is beyond the scope of this snapshot.

2 Risk, uncer tainty, and f inancial model ing

Now we are well equipped to start financial modeling and to consider the terms
risk and uncertainty. Both are often associated with events whose occurrence
and scope are unknown. With regards to probabilistic modeling, however, there
is a clear distinction between risk and uncertainty.

We refer to risk when we know all possible values that a random variable
can attain and are able to assign a probability distribution for their occurrence.
Here, we assume that all parameters of the distribution (for example the mean µ
and the variance σ2 of a normal distribution N(µ, σ2)) are either known or can
be estimated from data.
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On the contrary, the term uncertainty dates back to the economist Frank
Knight [5]. He used it to describe events for which we have no quantifiable
knowledge. In other words, we know that an uncertain event might happen, but
we have no model for the probability of its outcomes as there is no data from
the past that would allow us to specify a probability distribution neither for
the likelihood of its occurrence nor for its possible realizations.

A popular example of a (seemingly) random event is the evolution of stock
prices in financial markets. A central modeling task in financial mathematics
is the evolution of a stock price in time. The standard stock price model is
given by

St = S0e(b− 1
2 σ2)t+σWt . (1)

Here, S0 is the initial price, b the average increase (or decrease) of the stock
price per unit time, and σ quantifies how much we expect the price increase (or
decrease) to deviate from the average. Hence, the Brownian motion term Wt

describes the randomness of a process with a known probability distribution,
that is, risk. We write out the explicit forms of the mean E (St) and the
variance Var (St) of St for later comparison.

E (St) = S0ebt, Var (St) = E(S2
t ) − E(St)2 = S2

0e2bt
(

eσ2t − 1
)

. (2)

We compare the profits of stock investment to the profits of a money market
account, which is the value of money following the market rates. The evolution
of a money market account with continuous accumulation of interest at rate r
is given by

Bt = B0ert. (3)

Notice in particular, that this quantity is not random. There are two ways in
which uncertainty typically affects our model.

• If we do not know r, b, and/or σ exactly, but have some boundaries r0 ≤ r ≤
r1, b0 ≤ b ≤ b1, and/or σ0 ≤ σ ≤ σ1, then we speak of parameter ambiguity
of the market. We further explore ambiguity in Section 4.

• If we are afraid of a stock price crash with a maximum possible height of,
say, 20% until some final time T (but know all model parameters), then we
call this (crash) uncertainty when we neither have a probability distribution
for the crash height, for the crash time, nor for the crash occurrence. We
dive deeper into crash uncertainty in Section 3.

In both cases, we do not have a full probabilistic description of the evolution
of the market. We demonstrate the effect of these forms of uncertainty on the
solution of the so-called continuous-time portfolio problem. For this, we describe
the investment strategy of an investor via a portfolio process pt, t ∈ [0, T ]. We
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denote with pt the fraction of wealth we invest into the stock at time t, while
the remaining fraction 1 − pt is invested in the money market account. The
evolution of the resulting wealth process Xp

t with initial wealth x > 0 is given by

Xp
t = x exp

(∫ t

0

(
r + ps(b − r) − 1

2p2
sσ2

)
dt +

∫ t

0
psσdWs

)
. (4)

We give a heuristic derivation of the wealth process in the appendix, but one
can see that the wealth process follows the stock price in case of pt = 1 and the
money market account in case of pt = 0. The aim of the investor is to find the
portfolio process pt, which maximizes the expected utility from final wealth

max
p∈A(x)

E (U (Xp
T )) , (5)

where we denoted by A(x) the set of possible portfolio processes with initial
wealth x. In case of the log-utility function U(x) = ln(x), the optimal portfolio
process equals a constant investment of p∗

t = b−r
σ2 . The optimal expected utility

is (see for example [6])

E
(

ln
(

Xp∗

T

))
= ln(x) + rT + 1

2
(b − r)2

σ2 T. (6)

Note that we have not taken uncertainty into account. In the following sections,
we explore how uncertainty affects the optimal portfolio process.

Remark (Why do we need a utility function?). If we maximize the expected
final wealth E (Xp

T ) then – in the case of b > r – we should invest all our money
in the stock. Even more, if unlimited borrowing is allowed, we would take an
infinite credit (an unbounded negative position in the money market account) to
buy as many shares of the stock as possible. Of course, this is an extremely risky
strategy. Utility functions are strictly concave, differentiable functions on (0, ∞)
with an infinite slope at 0 and a vanishing slope at infinity. They automatically
rule out the above strategy of infinite borrowing. The main reason for this is the
asymptotically vanishing derivative of the utility function, as it implies having
one million euros in the bank is better than a one-in-a-thousand chance to win
a billion euros.

3 Por t fo l io problems with crashes – the worst-case
approach

Worst-case portfolio problems under the threat of crashes were introduced in [9].
In the simplest case, the authors consider a portfolio problem with a money
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market account with constant interest rate r and a stock with price dynamics
in normal times given by Equation (1). At a possible crash time τ , the stock
price suddenly drops by a fraction κ. We face uncertainty because we cannot
assign a probability to the crash height or time. We only assume κ ≤ k < 1 and
that a crash can happen. Thus, we cannot set up a portfolio problem of the
form (5), but have to look at a max-min problem of the form

max
p∈A(x)

min
τ∈[0,T +1],κ∈[0,k]

E (ln (Xp
T )) , (7)

to take crash uncertainty into account. The added minimization only means
that we look at the worst-case scenario. Note that the case τ > T corresponds
to the crash not happening.

The indi f ference pr inciple. To solve problem (7), note that we know both
the optimal portfolio process p∗

t = b−r
σ2 and the optimal expected utility after

the crash (see Equation (6)). To be independent of the crash, we choose a
portfolio process p̂t such that we are indifferent between the worst possible
crash happening at an arbitrary random time τ ∈ [0, T ] and no crash happening
at all. This condition can be expressed in equations as

E
(
ln

(
X p̂

τ (1 − kp̂τ−)
))

+
(

r + 1
2

(b − r)2

σ2

)
(T − τ) = E

(
ln

(
X p̂

T

))
. (8)

This indifference principle is sufficient to characterize the worst-case optimal
portfolio process 0 ≤ p̂t < 1/k before the crash. This time, the optimal portfolio
process is not constant, but changes in time. It is determined as the solution of
the following differential equation (see [9] for a derivation)

p′
t = −σ2

2k
(1 − ptk) (pt − p∗

t )2
, pT = 0. (9)

Note that we start following p̂t until a possible crash time τ and then switch
to p∗

t . We illustrate the behaviour of this strategy in Figure 3. There, we
present the optimal portfolio process p̂t before the crash along with the optimal
(constant) portfolio process p∗

t = 0.8.

General izat ions and modif icat ions. There exist many generalizations of
the above setting. Frank Seifried has developed a general framework including
abstract optimality principles in a more general model setting for the stock
prices in [12]. Optimal strategies under stress scenarios in the form of different
possible crashes in a multi-asset framework are derived in [8] (which also contains
a good list of further references). An application to dynamic reinsurance of
large claims can be found in [7].
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Figure 3: Optimal strategies before (dashed line) and after a possible crash
(solid line) for parameter values k = 0.15, b = 0.06, r = 0.01, σ = 0.25,
T = 1.

4 Por t fo l io problems with ambigui ty

In the fundamental contribution by Gilboa and Schmeidler [1], the idea of
ambiguity is related to a stochastic experiment that is not fully described.
There is uncertainty about prior knowledge of ingredients, in our case about
the distribution parameters as described in Section 2.

To illustrate how to deal with this kind of uncertainty, we consider the
portfolio problem (7) where instead of a possible crash, we now face interest
rate ambiguity, that is, we only know that r0 ≤ r ≤ r1 and look at

max
p∈A(x)

min
r∈[r0,r1]

E (ln (Xp
T )) . (10)

We know that for every fixed value of r, the optimal portfolio process is given
by p∗

t = (b − r)/σ2 (see Section 2) with optimal utility of

F (r, x) := ln(x) +
(

r + 1
2

(b − r)2

σ2

)
T. (11)

To solve the problem heuristically, we differentiate F with respect to r

∂

∂r
F (r, x) :=

(
1 − b − r

σ2

)
T. (12)

As a consequence, we see that if

r0 ≤ b − σ2 ≤ r1,
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the possible values of the derivative contain zero where indeed the minimum
of F (r, x) is attained. Hence, our only chance to be ambiguity indifferent with
respect to the interest rate r in this case is to choose p∗ = 1, that is, to invest all
our money in the stock. This then also leads to the worst optimal performance
in this setting. That this strategy is indeed the optimal one is a special case of
the results in [10]. There, the authors consider uncertainty on all r, b, and σ.
They derive explicit results for the ambiguity optimal portfolio process for all
possible cases of the relations between the intervals for r, b, and σ.

General izat ions and modif icat ions. In practice, solving the portfolio opti-
mization problem under ambiguity quickly leads to non-linear partial differential
equations, which are generally hard to solve. To weaken the influence of extreme
parameters, the concept of smooth ambiguity has been introduced in [4]. This
approach effectively recognises that extreme parameter values are extremely
unlikely and lessens their influence. Considering the inner part of the portfolio
problem has led to the concept of non-linear expectation and a corresponding
stochastic calculus under uncertainty pioneered by Shige Peng (summarized
in [11]). An interesting recent branch (with possible applications to insure
climate risks) is presented in [2] which considers the optimal allocation in an
exchange economy under ambiguity.

5 Conclusion

In this snapshot, we have highlighted different aspects and applications of
uncertainty in financial modeling. Rather than being exhaustive, we focused
on a case study of portfolio problems. Interested readers should, in particular,
consult the references in the Generalizations and modifications sections.

We emphasize that recent research on uncertainty in financial models has
led to new principles such as the indifference principle and the novel theoretical
branch of non-linear expectations. On the applied side, many contributions
have shown that including uncertainty does not result in moving completely
away from investments with an uncertain component but treating them with
caution.

As the future climate and political risks are hard to model conventionally,
we believe that the role of uncertainty as a modeling tool will grow.
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6 Appendix: Mot ivat ion of the form of the wealth process

We give a heuristic derivation of the form of the wealth process. We show that
it behaves as the stock price process but with suitably adjusted parameters. We
start by using the approximation

eδ ≈ 1 + δ + 1
2δ2, (13)

which works for small values of δ. Evaluate the relative change of the stock
price over a short time δ:

St+δ − St

St
= e(b− 1

2 σ2)δ+σ(Wt+δ−Wt) − 1 ≈ bδ + σ(Wt+δ − Wt), (14)

where we ignored terms of order higher than δ, in particular all mixed terms
with Brownian motion and δ. Since the variance of the Brownian step is δ, it
has an order of δ1/2. Indeed, the second-order approximation of the Brownian
step cancels the first-order approximation − 1

2 σ2δ on average.
The relative change of the money market account is simpler since it does not

involve a stochastic term. We have

Bt+δ − Bt

Bt
≈ rδ. (15)

Let us denote by p the fraction of our wealth invested into the stock, while
the remaining fraction 1 − p is invested in the money market account. Then
the wealth process is

Xt = (1 − p)Bt + pSt.

The relative change of the wealth process Xt is estimated via equations (14)
and (15) as

Xt+δ − Xt

Xt
≈ ((1 − p)r + pb)δ + pσ(Wt+δ − Wt). (16)

The relative increase of the wealth process has the same behaviour as the stock
price (Equation (14)) if we identify b with (1 − p)r + pb and σ with pσ. Thus
the wealth process looks exactly like a stock price process (Equation (1)). In
case of a non-constant portfolio process, suitable integrals occur as in (4).

This derivation can be made rigorous with the Itô calculus at hand.
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