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In the ’70s, physicists introduced a new type of sym-
metry – supersymmetry – to address some unresolved
issues in particle physics models. Its mathematical
foundations involve the representation theory of the
associated symmetry groups, called supergroups.

Our aim is to understand fusion rules, which de-
scribe how a combination of two physical systems
can be broken down into more fundamental building
blocks. Although the answer is largely unknown, we
can get approximate answers in some cases.

1 Symmetr ies and groups

The concept of symmetry is one of the foundational principles in mathematics
and physics. A symmetry of a system is a transformation that leaves the system
unchanged, or invariant. For example, a sphere in three-dimensional space
looks the same after a rotation by an arbitrary angle, hence it is symmetric
with respect to rotations. Since an abstract set does not depend on the order
of its elements, the set {1, 2, . . . , n} is symmetric with regards to arbitrary
permutations (that is, re-orderings) of the numbers 1, 2, . . . , n.

1 The research of T. H. was partially funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy–EXC-2047/1–390685813.
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The symmetry transformations of a system form the associated symmetry
group. In the case of the sphere, it is the special orthogonal group SO(3) of all
rotations about the center; in the case of the set {1, . . . , n}, it is the permutation
group Sn, also called symmetric group. Symmetries need not be geometric in
nature, as the permutation example shows.

Other examples of symmetries arise in physics: Particles can have an inner
symmetry called spin. Elementary particles can be divided into two families,
according to their behavior under spin transformations: bosons (like the pho-
ton) and fermions (like the electron). In the ’70s, physicists described a new
conjectural form of symmetry: Supersymmetry is a symmetry transformation
that can transform bosons into fermions and vice versa.

Laying the mathematical foundations of supersymmetry has been an ongoing
process since then. A key part of this is the representation theory of supergroups.
In this area, we try to understand a mathematical problem that would physically
correspond to the fusion of two physical systems.

Let us step back for a moment and return to the basic notions of a group.
If we look at the set of rotations, it has a few remarkable properties:

1. If we take two rotations φ1, φ2, we get another rotation φ1 ◦ φ2 by doing
the rotations consecutively.

2. We can rotate by zero degrees; this rotation leaves all points unchanged.
3. For any rotation with angle θ there is an inverse rotation, namely by −θ.

If we first do one and then the other, we rotate by zero degrees in total.

In abstract terms, we have a set of transformations (the rotations) in which
any two elements can be composed to yield another element from this set;
there is a neutral element with respect to this composition (the rotation by
zero degrees) and an inverse (the rotation by the angle −θ). A set with such
a composition is called a group. Groups abound in mathematics; an obvious
example is the set of real numbers R with the usual addition: a + b is another
real number, the neutral element is 0, and the inverse to a is −a. Yet another
example is the symmetric group or permutation group mentioned above.

2 Representat ions of groups

Representation theory studies groups – or other similar structures – by repre-
senting them as linear transformations on a different structure, called vector
space. The prototypical example of a vector space is the three-dimensional
space R3 or its generalization, the n-dimensional space Rn. An element in R3 is
given by a triple (x, y, z) or (x1, x2, x3), where x1, x2, and x3 are real numbers
called coordinates. It is common to call these triples vectors.
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Figure 1: A point in R3 is defined by three coordinates x, y, z.

But R3 has more structure than just a set of vectors: We can add two triples,

(x1, x2, x3) + (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3),

we can multiply them by real numbers,

a · (x1, x2, x3) = (a x1, a x2, a x3) for a ∈ R,

and there is the zero vector (0, 0, 0), which fulfills

(0, 0, 0) + (x1, x2, x3) = (x1, x2, x3).

A structure with these properties is called a vector space in mathematics. The
vector space R3 is specified by three coordinates, but there are vector spaces
that cannot be described by a finite number of coordinates, therefore called
infinite-dimensional.

A linear map φ : V → V of a vector space V is one that is compatible with
the addition and scalar operation:

φ(x + y) = φ(x) + φ(y) and φ(a x) = a φ(x) for all x, y ∈ V, a ∈ R.

Geometrically, this means that straight lines get mapped to straight lines, but
they can be rotated and angles may be distorted. A representation of a group
G then assigns to every element g ∈ G a linear map φg : V → V . We often say
that G acts on V (via linear maps) and write g · v for the image of v under φg.

As linear maps are easier to understand than arbitrary groups, a representa-
tion of G allows us to study G by looking at the associated linear maps. By
doing so, we lose information about the group. We should therefore understand
the whole collection of representations.
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3 A quick pr imer on representat ion theory

The study of representations of groups (or similar algebraic structures) is called
representation theory. It is a vast theory with many different flavors, but at
the heart of the matter there are some simple questions such as: How many
representations are there? Can we classify them? In this generality, there is
no hope to answer them. A first very harsh restriction might be to look only
at finite-dimensional vector spaces. As a second step, one should not hope to
get uniform answers for all groups, but restrict to particular groups of interest
(such as Sn or SO(n)). Thirdly, the problem of describing all finite-dimensional
representations should be reduced to some basic building blocks.

Like all matter is composed of atoms, and all atoms of elementary particles,
each representation should be built from certain fundamental building blocks.
These building blocks are called irreducible representations. To fully understand
representations, it is enough to describe the irreducible ones and the ways in
which they can be combined to form other representations. A representation is
called irreducible if it does not contain any non-trivial subrepresentation. This
means there is no smaller vector space U inside of V such that the representation
maps all vectors in U to vectors in U .

Let us look at the following action of the permutation group S3 on R3:
An element in R3 is given by a triple (x, y, z) of real numbers. If σ ∈ S3 is
the permutation swapping the second and third entries, then φσ maps (x, y, z)
to (x, z, y). In this way, we can specify a linear map from R3 to R3 for each
element in S3, which gives a representation of S3 on R3.

But this representation is not irreducible! Indeed, look at the vectors in R3

where every entry is the same number, for example (1, 1, 1). The space of such
tuples is a one-dimensional subspace of R3, since we can identify it with R via the
map x 7→ (x, x, x). This subspace is invariant under S3, as swapping identical
entries does not change (x, x, x). We have hence found a subrepresentation in
R3, so our original representation is not irreducible.

The set of tuples (x, y, z) that satisfy x + y + z = 0 is also a vector space and
invariant under S3, as reordering the entries does not change their sum. This
space, together with the permutation action, is sometimes called the standard
representation st of S3. As a subset of R3, it is the two-dimensional plane
orthogonal to the vector (1, 1, 1). Swapping two entries gives a reflection about
some line in this plane, while the permutation (x, y, z) 7→ (y, z, x) is a rotation
about 120◦.

Any vector in R3 is a sum of vectors from the two subrepresentations (because
(x, y, z) = (m, m, m) + (x − m, y − m, z − m) for m = x+y+z

3 ) and they have
only the zero-vector in common. We write this as

R3 ∼= R ⊕ st (as representations of S3).
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The same is true if we start with an arbitrary number n of dimensions instead
of 3. In this case, the standard representation has the dimension n − 1. It can
be checked that st is irreducible, hence the representation of Sn on Rn is the
direct sum of two irreducible representations.

In fact, Maschke’s Theorem asserts that every finite-dimensional represen-
tation of a finite group on a real or complex vector space can be written as a
direct sum of irreducible representations. This theorem is no longer true if one
works with infinite groups like R or infinite-dimensional vector spaces.

4 Sums, products, and fusion rules of representat ions

The representation theory of the permutation groups is an old classical subject.
Much of it goes back to the work of Isaai Schur and Georg Frobenius more than
a hundred years ago.

Figure 2: Isaai Schur (1875–1941) and Georg Frobenius (1849–1917).

But even here, one encounters elementary, yet unsolved questions. One such
question concerns the fusion rules. Given two representations V, W of a group G
(this means that V and W are vector spaces on which G acts via linear maps),
we can use these to construct new representations. One such construction is
the direct sum ⊕ used above.

Writing V ⊕ W means looking at the tuples (v, w) where v ∈ V, w ∈ W .
These tuples are closed under addition (v1, w1) + (v2, w2) = (v1 + v2, w1 + w2)
and multiplication by a real number a · (v, w) = (a v, a w), and hence form a
vector space of dimension dim(V ) + dim(W ). The vector space V ⊕ W is a
representation of G if we define g · (v, w) = (g · v, g · w). One example of such a
construction is R2: As a vector space, this is simply R ⊕ R.
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Yet another way to build a new representation is the tensor product V ⊗ W .
This is again a new vector space, but this time of dimension dim(V ) ·dim(W ). It
contains elements v⊗w for v ∈ V, w ∈ W , but also more complicated expressions
(sometimes called entangled states) of the form v1 ⊗ w1 + v2 ⊗ w2 + · · · + vk ⊗ wk

for some vectors vi in V and some vectors wj in W .
If we write the tensor product

V ⊗ W = I1 ⊕ . . . ⊕ I1︸ ︷︷ ︸
c1 times

⊕ I2 ⊕ . . . ⊕ I2︸ ︷︷ ︸
c2 times

⊕ . . . ⊕ In ⊕ . . . ⊕ In︸ ︷︷ ︸
cn times

of representations V and W as a sum of representations I1, . . . , In, the num-
bers ci, which count how often Ii turns up in this decomposition, are called
multiplicities. A rule that tells us what these multiplicities are and how they
are computed (and therefore how the tensor product V ⊗ W decomposes) is
called a fusion rule.

In the situation of the permutation group, Maschke’s Theorem states that any
finite-dimensional representation can be written as a direct sum of irreducible
representations. In this case the multiplicities ci have a special name: they are
called Kronecker coefficients. While the finite-dimensional representation theory
of the permutation group over the real or complex numbers is classical and we
know all irreducable representations, we do not know any good description of
these coefficients yet! We would like to have a closed combinatorial expression
of the ci, but we do not know it. The lesson is that finding the fusion rules
is going to be very hard in general if we already fail for such a well-studied
example as Sn.

5 Cont inuous symmetr ies and Lie groups

It is important to take into account that there are many types of groups, and
hence we cannot expect a single theory that describes all possible representations
of groups. For example, groups could describe continuous symmetries (such as
SO(3), where we can continuously vary rotation angles) or discrete symmetries
(such as the permutation group Sn). Continuous symmetries lead to the theory of
Lie groups, named after the Norwegian mathematician Sophus Lie (1842–1899).
An analysis of their representations requires other methods than the study of
discrete groups such as Sn.

The most important Lie groups are GL(n,R), the group of invertible linear
maps from Rn → Rn, and its analog GL(n,C), which is obtained by replacing
the real numbers R with complex numbers C. These groups are called matrix
groups, because it is often convenient to represent their elements as invertible
n × n matrices, which are arrays of real or complex numbers with n rows and
n columns that have a special rule for multiplication. (For further reading on
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matrices, see Snapshot 5/2019 [2].) Many other important Lie groups occur
naturally as subgroups:

• The special linear groups SL(n,R) and SL(n,C), consisting of linear maps
whose determinant is one. This means that they may distort shapes but do
not change volumes.

• The special orthogonal group SO(n), consisting of all rotations in Rn, and
the orthogonal group O(n), which additionally contains all combinations of
reflections and rotations.

• The unitary groups U(n) and special unitary groups SU(n), which are
analogous to O(n) and SO(n) for the complex vector space Cn.

• Other notable examples, which we will not consider in detail, are the series
of symplectic groups Sp(2n,C) and several “exceptional Lie groups”.

The representation theory of Lie groups is an extremely rich subject that has
connections to almost all areas of pure mathematics. In general, even a finite-
dimensional representation over the real or complex numbers might not be a sum
of irreducible representations. However, Weyl’s Complete Reducibility Theorem
states that such a decomposition is always possible for algebraic representations
of matrix groups such as GL(n,R), GL(n,C), SO(n), O(n), Sp(2n,C), and
SU(n). Contrary to the finite group case, there are always infinitely many
irreducible representations, but they can often be classified. Coming back to
our original problem, we can now ask how we can decompose the tensor product
of two representations into a direct sum of simpler representations.

For certain groups of continuous symmetries, there are algorithmic descrip-
tions of these fusion rules: the “Littlewood–Richardson rule” for GL(n), SL(n),
and variants of it for other classical groups. In fact, Dudley Littlewood and
Archibald Richardson formulated an algorithm for this problem in the SL(n)-
case in 1934, which was finally proven to be correct in the ’70s by Marcel-Paul
Schuetzenberger and Glânffrwd Thomas. In the words of Gordon James:

Unfortunately the Littlewood-Richardson rule is much harder to
prove than was at first suspected. The author was once told that the
Littlewood-Richardson rule helped to get men on the moon but was
not proved until after they got there.

Indeed, as soon as the dimensions of the representations become large, their
tensor product decomposes into zillions of summands with no obvious pattern.

6 Algebraic aspects of the Standard Model

Physicists are often not interested in all possible groups, they mostly need very
special Lie groups: R and U(1) for translation symmetry, SO(3) for spatial
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rotations, SU(2) to describe isospin, and a few others more. The most important
groups are those that arise as “gauge groups” in gauge field theories, notably
the “Standard Model”, which is a special kind of quantum field theory and
currently the most successful framework in particle physics.

The symmetry group of the Standard Model and the classification of elemen-
tary particles are based on a feedback loop between symmetry considerations
(that is, the representation theory of possible symmetry groups) and empirical
data. Analysis of data from high energy collision experiments suggested conser-
vation laws and symmetry constraints, which in turn have led to the prediction
of new particles that could ultimately be found in experiments. One of the most
recent examples is the Higgs boson, which was predicted by Peter Higgs and
others in 1964 and experimentally confirmed in 2012.

Ultimately, the goal is to describe all matter in terms of elementary particles
and the interactions between them by fundamental forces. The Standard Model
achieves this for all known elementary particles and forces except for gravity.

The wave-like nature of elementary particles is modelled by vector fields,
which assign a vector to every point in space and time. The dynamics of the
Standard Model (that is, how the vector fields evolve and oscillate over time) are
described by a Lagrangian L, a mathematical expression from which all further
equations of the theory can be derived. For example, if the Lagrangian contains
a product of fields, the corresponding particles interact with each other.

To get this Lagrangian, one first postulates a set of symmetries and then
tries to find the most general Lagrangian that satisfies these symmetries. As in
all field theories that respect Albert Einstein’s theory of relativity, the laws of

Figure 3: The elementary particles in the Standard Model.
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physics must remain unchanged under changes in speed, position, or rotations
of the coordinate system. These transformations form the Poincaré group, so
the Lagrangian has to be symmetric under this group.

Additionally, the Lagrangian has an internal symmetry (“local gauge symme-
try”) with respect to the group G = U(1) × SU(2) × SU(3). These three groups
correspond to the three interactions that the Standard Model incorporates:
electromagnetism, weak, and strong nuclear force.

Each of the elementary particles (like the electron or any of the quarks)
is represented by a vector field on which one of these three groups acts as a
symmetry group. An example is given by the up-quark: It comes in three
different polarizations (sometimes called red, green, blue) and each polarization
is described by one complex number. Together, they combine to the standard
representation C3 of SU(3) (when ignoring the SU(2) × U(1)-part).

As mentioned above, the Lagrangian is an expression that combines the values
of these vector fields and is also symmetric under these groups. The evolution
of a physical state in the Standard Model is given by a so-called path integral
(or Feynman integral) over a term involving the Lagrangian, and is far beyond
this little paper. These Feynman integrals are not mathematically rigorously
defined, but they have been used by physicists since decades to calculate the
effect of collisions and other physical effects with very high precision.

If we want to describe the collision of two particles, the result depends on
the fusion rules between the corresponding irreducible representations. While

Figure 4: Data from a particle collision.
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there are many open questions about Feynman integrals, the part that involves
the fusion rules is a classical piece of mathematics and well-understood. The
situation changes considerably if one tries to replace the Standard Model and
its gauge group by a more complicated (but perhaps more elegant) theory based
on the notion of supersymmetry.

7 Super structures

The Standard Model of particle physics had tremendous success in unifying
electromagnetism, weak, and strong nuclear force, and agrees with experimental
results. However, it has several shortcomings, which lead physicists to search for
alternatives. In particular, supersymmetric extensions of the Standard Model
provide elegant solutions to some of these problems. However, no experimental
evidence for such an extension was found at the LHC or other colliders so far,
and hence the concept of supersymmetry remains in limbo despite its theoretical
advantages.

Mathematically, the passage to the supersymmetric extension involves replac-
ing the symmetry groups of the model, like the gauge group U(1)×SU(2)×SU(3)
or the Poincaré group, with a Lie supergroup. This is a group that has an even
part (corresponding to boson particles), an odd part (corresponding to fermion
particles), and obeys some additional rules. Similarly, the vector spaces on
which these groups or algebras act are replaced by super vector spaces, vector
spaces with an even and an odd part. The easiest example is simply

Cm|n = Cm ⊕ Cn,

a vector space with two parts, where Cm is seen as even and Cn as odd.
The space of linear maps of Cm|n to itself also has an even and odd part:

A transformation Cm|n → Cm|n is called even if it maps the even part to the
even part and the odd part to the odd part. It is called odd if it maps the even
to odd part and vice versa. 2 Hence the space of linear maps of Cm|n is itself a
super vector space! Mimicking the definition of GL(n,C), we define

GL(m|n,C), the General Linear Supergroup

to be the group of invertible linear maps Cm|n → Cm|n. The supergroup
incorporates the classical one via GL(m|0,C) = GL(m,C). There are analogs
of the classical groups SO(n) and Sp(2n) (the “orthosymplectic supergroups”),
but also new types of groups that have no classical counterpart.

2 Note that not every linear transformation is even or odd. But every transformation can
be written as a sum of an even and an odd transformation, just as every vector in Cm|n is
the sum of an even and an odd vector.
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Similar to the classical theory of Lie groups, one can now ask: What are the
irreducible representations? What are their dimensions? Can every representa-
tion be written as a direct sum of irreducible representations? These and further
questions have been investigated since the foundational work of Victor Kac [7]
in the ’70s; and the study of (algebraic) representations of Lie supergroups has
now become a thriving area in pure mathematics with connections to many
other fields such as algebraic geometry, quantum topology, and even analytic
number theory.

8 Fusion rules for supergroups and truncat ions

One major difference between classical Lie groups and Lie supergroups is that
Weyl’s Theorem fails for supergroups: Not all finite-dimensional representations
of supergroups can be written as a sum of irreducible representations. This
means that we will encounter representations that have many subrepresentations,
but there is no way to split them into a direct sum of two other representations.
Such representations are called indecomposable 3 . The occurence of such repre-
sentations renders many tools from classical Lie theory useless and the answers
to the questions posed above are much more complicated or are even unknown.

In the beginning, there is a fortunate surprise: It is quite easy to parametrize
all irreducible representations for many concrete Lie supergroups. In the case of
GL(m|n), we can parametrize all irreducible representations by m + n integer
numbers. This means that there is an irreducible representation called

L( λ1, . . . , λm | λm+1, . . . , λm+n )

for any two lists of m integers λ1, . . . , λm and n integers λm+1, . . . , λm+n, sorted
in descending order. We abbreviate this irreducible representation by L(λ) and
call the two lists of λs the weights of this representation. Every irreducible
representation of GL(m|n) is then of the form L(λ) or ΠL(λ), where Π means
that we swap the even and the odd part of the underlying super vector space.

Many of the questions that one can ask about these L(λ)s turn out to be
very hard: What is the dimension of L(λ)? What are the dimensions of its
even and odd parts? In what ways can we combine such L(λ) to form these big
complicated indecomposable representations? And, most importantly for this
article, what are the fusion rules for L(λ) ⊗ L(µ)? Some of these questions have
been answered in the last 10–20 years [8, 1, 4] but there are still open questions,
and the situation is even more complicated for other Lie supergroups.

3 Remember that a representation is called irreducible if it contains no smaller subrepresen-
tations, while indecomposable means that it is not a sum of some of its subrepresentations.
Every irreducible representation is therefore indecomposable, but not vice versa.
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Quite generally, the fusion rules are known for the case GL(m|1), but beyond
that, the decomposition of L(λ) ⊗ L(µ) is only known for special λ and µ.

It was suggested in [3] and carried out in [5, 6] that one should instead look
at truncated fusion rules: Our goal of finding a decomposition

L(λ) ⊗ L(µ) = I1 ⊕ I2 ⊕ . . . ⊕ In

of a tensor product into a sum of indecomposable summands I1, . . . In becomes
more tractable if we disregard all summands whose even and odd parts have
the same dimension. The difference of the dimensions of the even and odd part
of a super vector space is called its superdimension, so we ignore all summands
with superdimension zero when we truncate the decomposition.

While the actual fusion rules are unknown, it turns out that one can determine
these truncated fusion rules in almost all cases!

Our main result [5] essentially says that the fusion rule describing this
decomposition is the same as for classical groups such as SL(n), SU(n), Sp(2n),
and so on!

The key point is that for each irreducible representation L(λ) of GL(m|n),
we can attach a group Hλ (which is now not a supergroup, but a classical
group like those above) and an irreducible representation V (λ) of Hλ such that
L(λ)⊗L(µ) decomposes exactly as V (λ)⊗V (µ) decomposes. We also described
how to calculate the groups Hλ and the representations V (λ) explicitely.

How does this work in practice? Suppose we have λ = µ = (2, 1, 0 | 0, 91, 92)
and look at the representation L(λ) of GL(3|3). Our main theorems tell us that
the corresponding pair is Hλ = Sp(6) and V (λ) = L(1, 0, 0). Here, L(1, 0, 0) is
actually just the standard representation of Sp(6): The vector space C6 with
the action of Sp(6) by linear maps. The classical fusion rules for Sp(6) tell us
that L(1, 0, 0) ⊗ L(1, 0, 0) decomposes as

L(1, 0, 0) ⊗ L(1, 0, 0) ∼= L(0, 0, 0) ⊕ L(2, 0, 0) ⊕ L(1, 1, 0).

To each of the three summands corresponds an indecomposable representa-
tion I1, I2, I3 of GL(3|3) whose superdimension (that is, the difference of the
dimensions of the even and odd part) agrees with the dimension of the Sp(6)-
representations. Hence

L(2, 1, 0 | 0, 91, 92) ⊗ L(2, 1, 0 | 0, 91, 92) ∼= I1 ⊕ I2 ⊕ I3,

up to summands of superdimension zero. Now we can iterate this further and
apply this to tensor products between the indecomposable summands that
appear in this way. In the above example, I3 corresponds to L(1, 1, 0). In order
to compute I3⊗I3 up to superdimension zero, we can look at L(1, 1, 0)⊗L(1, 1, 0)
and match the resulting summands with indecomposable summands in I3 ⊗ I3
and so forth.
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Alas, there is a small caveat: For some very special λ, we cannot determine Hλ

completely. In these cases, we have two candidates for Hλ and cannot decide
which of the two is actually the right one.

9 Back to physics?

Let us recap what we have discussed so far: For some important types of groups,
there are theorems that ensure representations can be decomposed into sums of
simpler, irreducible representations. However, calculating these decompositions
in practice is much more difficult. Fusion rules, which describe how tensor
products are decomposed, are only known for a few special groups. In physics,
these fusion rules are particularly important for understanding the interactions
between multiple particles or physical systems.

Supergroups have an even more complicated representation theory. But for
certain supergroups G, we can now associate a classical group Hλ to every
representation L(λ) of G and calculate truncated fusion rules of G from the
fusion rules of Hλ, where “truncated” means that we ignore the summands of
superdimension zero. While these results can be seen as a first step to obtain
general fusion rules, one may wonder whether there is more to it, whether
maybe the truncation actually has a physical meaning?

Let us suppose we have a supersymmetric extension of the Standard Model
of particle physics, in which the symmetry group is replaced by a supergroup G.
If the vector fields that correspond to supersymmetric particles take values
in a finite-dimensional representation V of G, the computation of interactions
between particles require the analysis of higher tensor products of V . These
are approximated by our truncated fusion rules.

A particular important case is the one of G = GL(4|4), due to its connection
to the super conformal group, a generalization of the conformal group, which
consists of those transformations of four-dimensional spacetime (three space
dimensions and one time dimension) that preserve angles.

Here is a list of the groups associated to some small representations of
GL(4|4), where Spc stands for the compact symplectic group:

Representation L(λ) superdimension associated group Hλ

L( 3, 2, 1, 0 | 0, 91, 92, 93 ) sdim = 24 Hλ = SO(24) (conjecturally)
L( 3, 2, 0, 0 | 0, 0, 92, 93 ) sdim = 12 Hλ = SU(12)
L( 3, 1, 1, 0 | 0, 91, 91, 93 ) sdim = 12 Hλ = Spc(12)
L( 3, 1, 0, 0 | 0, 0, 91, 93 ) sdim = 8 Hλ = SU(8)
L( 3, 0, 0, 0 | 0, 0, 0, 93 ) sdim = 4 Hλ = SU(4)
L( 2, 2, 1, 0 | 0, 91, 92, 92 ) sdim = 12 Hλ = SU(12)
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L( 2, 2, 0, 0 | 0, 0, 92, 92 ) sdim = 6 Hλ = SO(6)
L( 2, 1, 1, 0 | 0, 91, 91, 92 ) sdim = 8 Hλ = SU(8)
L( 2, 1, 0, 0 | 0, 0, 91, 92 ) sdim = 6 Hλ = Spc(6)
L( 2, 0, 0, 0 | 0, 0, 0, 92 ) sdim = 3 Hλ = SU(3)
L( 1, 1, 1, 0 | 0, 91, 91, 91 ) sdim = 4 Hλ = SU(4)
L( 1, 1, 0, 0 | 0, 0, 91, 91 ) sdim = 3 Hλ = SU(3)
L( 1, 0, 0, 0 | 0, 0, 0, 91 ) sdim = 2 Hλ = SU(2)
L( 1, 1, 1, 1 | 91, 91, 91, 91 ) sdim = 1 Hλ = U(1)

In fact, in the first example we cannot rule a second possibility.
The reader will observe that the smallest arising groups are U(1), SU(2), and

SU(3). One may ask whether the appearence of these three groups is a mere
accident, or whether there does exist some connection with the symmetry group
U(1) × SU(2) × SU(3) of the Standard Model of elementary particle physics?

One special feature of supersymmetric field theories is that superpartners of
particles sometimes have (almost) the same effect as the original particles but
with a minus sign, so that the effects cancel each other. These cancellations are
responsible for many of the more amenable aspects of such theories compared
to the Standard Model. Due to such cancellations, it might happen that the
contributions of summands of superdimension zero are too small to measure in
the energy ranges reachable by particle physics experiments. Hence a physical
observer might come up with the impression that the underlying rules of
symmetry are imposed by the representation theory of the groups Hλ; and the
groups Hλ or their product would appear as an internal symmetry group of the
theory in an approximate sense.

Of course this is highly speculative. Whether there exists any supersymmetry
in nature at all, and whether our Hλ appear as approximate symmetry groups
of such a theory, will probably take many years to uncover.
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