­

Counting self-avoiding walks on the hexagonal lattice

Instantanés de recherche mathématique à Oberwolfach

Counting self-avoiding walks on the hexagonal lattice

In how many ways can you go for a walk along a lattice grid in such a way that you never meet your own trail? In this snapshot, we describe some combinatorial and statistical aspects of these so-called self-avoiding walks. In particular, we discuss a recent result concerning the number of self-avoiding walks on the hexagonal (“honeycomb”) lattice. In the last part, we briefly hint at the connection to the geometry of long random self-avoiding walks.

If you are interested in translating this Snapshot, please contact us at info@imaginary.org

Sujet mathématique

Théorie des probabilités et statistique

Auteur(s)

Hugo Duminil-Copin

Licence

DOI

10.14760/SNAP-2019-006-EN

Télécharger PDF

PDF

snapshots: overview

      Sujet mathématique

      Algèbre et théorie des nombres
      Analyse
      Pédagogie et éducation
      Mathématiques discrètes et fondements des mathématiques
      Géométrie et Topologie
      Calcul numérique et calcul scientifique
      Théorie des probabilités et statistique

      Liens avec d'autres domaines

      Chimie et sciences de la terre
      Informatique
      Ingénierie et technologie
      Finances
      Humanités et sciences sociales
      Sciences de la vie
      Physique
      Pensées mathématiques

      These icons are available under the CC BY-SA 4.0 license. Please feel free to use them to classify your own content.
      The vector icons can be downloaded here.