Solving quadratic equations in many variables

Instantanés de recherche mathématique à Oberwolfach

Solving quadratic equations in many variables

Fields are number systems in which every linear equation has a solution, such as the set of all rational numbers Q or the set of all real numbers R. All fields have the same properties in relation with systems of linear equations, but quadratic equations behave differently from field to field. Is there a field in which every quadratic equation in five variables has a solution, but some quadratic equation in four variables has no solution? The answer is in this snapshot. 

If you are interested in translating this Snapshot, please contact us at info@imaginary.org

Sujet mathématique

Algèbre et théorie des nombres

Auteur(s)

Jean-Pierre Tignol
Senior Editor:
Carla Cederbaum
Junior Editor:
Sophia Jahns, Anja Randecker

Licence

DOI

10.14760/SNAP-2017-012-EN

Télécharger PDF

PDF

snapshots: overview

Sujet mathématique

Algèbre et théorie des nombres
Analyse
Pédagogie et éducation
Mathématiques discrètes et fondements des mathématiques
Géométrie et Topologie
Calcul numérique et calcul scientifique
Théorie des probabilités et statistique

Liens avec d'autres domaines

Chimie et sciences de la terre
Informatique
Ingénierie et technologie
Finances
Humanités et sciences sociales
Sciences de la vie
Physique
Pensées mathématiques

These icons are available under the CC BY-SA 4.0 license. Please feel free to use them to classify your own content.
The vector icons can be downloaded here.