­

Solving quadratic equations in many variables

Instantanés de recherche mathématique à Oberwolfach

Solving quadratic equations in many variables

Fields are number systems in which every linear equation has a solution, such as the set of all rational numbers Q or the set of all real numbers R. All fields have the same properties in relation with systems of linear equations, but quadratic equations behave differently from field to field. Is there a field in which every quadratic equation in five variables has a solution, but some quadratic equation in four variables has no solution? The answer is in this snapshot. 

If you are interested in translating this Snapshot, please contact us at info@imaginary.org

Sujet mathématique

Algèbre et théorie des nombres

Auteur(s)

Jean-Pierre Tignol

Licence

DOI

10.14760/SNAP-2017-012-EN

Télécharger PDF

PDF

snapshots: overview

      Sujet mathématique

      Algèbre et théorie des nombres
      Analyse
      Pédagogie et éducation
      Mathématiques discrètes et fondements des mathématiques
      Géométrie et Topologie
      Calcul numérique et calcul scientifique
      Théorie des probabilités et statistique

      Liens avec d'autres domaines

      Chimie et sciences de la terre
      Informatique
      Ingénierie et technologie
      Finances
      Humanités et sciences sociales
      Sciences de la vie
      Physique
      Pensées mathématiques

      These icons are available under the CC BY-SA 4.0 license. Please feel free to use them to classify your own content.
      The vector icons can be downloaded here.