Closed geodesics on surfaces

오버불파크에서 찍은 현대수학의 면모

Closed geodesics on surfaces

We consider surfaces of three types: the sphere, the torus, and many-holed tori. These surfaces naturally admit geometries of positive, zero, and negative cur- vature, respectively. It is interesting to study straight line paths, known as geodesics, in these geometries. We discuss the issue of counting closed geodesics; this is particularly rich for hyperbolic (negatively curved) surfaces.

If you are interested in translating this Snapshot, please contact us at info@imaginary.org

수학적 주제

기하학/위상수학

다른 분야와의 연관성

물리학

저자

Benjamin Dozier

라이선스

디지털 객체 식별자(DOI)

10.14760/SNAP-2022-013-EN

PDF 다운로드

PDF

snapshots: overview

수학적 주제

대수학/정수론
해석학
수학교육/교수법
이산수학/수학기초론
기하학/위상수학
수치해석/과학계산
확률론/통계학

다른 분야와의 연관성

화학 및 지구과학
컴퓨터 과학
공학
금융
인문/사회과학
생명 과학
물리학
수학 전반에 대한 소고

이 아이콘은 CC BY-SA 4.0 라이센스에서 이용가능합니다. 게시글 범주 분류를 위해 자유롭게 사용하세요.

벡터 아이콘은 여기서 다운받을 수 있습니다.