이 아이콘은 CC BY-SA 4.0 라이센스에서 이용가능합니다. 게시글 범주 분류를 위해 자유롭게 사용하세요.
벡터 아이콘은 여기서 다운받을 수 있습니다.
In school, we learn that the interior angles of any triangle sum up to π. However, there exist spaces different from the usual Euclidean space in which this is not true. One of these spaces is the “hyperbolic space”, which has another geometry than the classical Euclidean geometry. In this snapshot, we consider the geometry of hyperbolic polytopes, for example polygons, how they tile hyperbolic space, and how reflections along the faces of polytopes give rise to important mathematical structures. The classification of these structures is an open area of research.
If you are interested in translating this Snapshot, please contact us at info@imaginary.org
이 아이콘은 CC BY-SA 4.0 라이센스에서 이용가능합니다. 게시글 범주 분류를 위해 자유롭게 사용하세요.
벡터 아이콘은 여기서 다운받을 수 있습니다.