Mixed volumes and mixed integrals

Instantanés de recherche mathématique à Oberwolfach

Mixed volumes and mixed integrals

In recent years, mathematicians have developed new approaches to study convex sets: instead of considering convex sets themselves, they explore certain functions or measures that are related to them. Problems from convex geometry become thereby accessible to analytic and probabilistic tools, and we can use these tools to make progress on very difficult open problems.

We discuss in this Snapshot such a functional ex- tension of some “volumes” which measure how “big” a set is. We recall the construction of “intrinsic vol- umes”, discuss the fundamental inequalities between them, and explain the functional extensions of these results.

If you are interested in translating this Snapshot, please contact us at info@imaginary.org

Sujet mathématique

Analyse
Géométrie et Topologie

Auteur(s)

Liran Rotem

Licence

DOI

10.14760/SNAP-2018-014-EN

Télécharger PDF

PDF

snapshots: overview

Sujet mathématique

Algèbre et théorie des nombres
Analyse
Pédagogie et éducation
Mathématiques discrètes et fondements des mathématiques
Géométrie et Topologie
Calcul numérique et calcul scientifique
Théorie des probabilités et statistique

Liens avec d'autres domaines

Chimie et sciences de la terre
Informatique
Ingénierie et technologie
Finances
Humanités et sciences sociales
Sciences de la vie
Physique
Pensées mathématiques

These icons are available under the CC BY-SA 4.0 license. Please feel free to use them to classify your own content.
The vector icons can be downloaded here.