Mixed volumes and mixed integrals

Schnappschüsse moderner Mathematik aus Oberwolfach

Mixed volumes and mixed integrals

In recent years, mathematicians have developed new approaches to study convex sets: instead of considering convex sets themselves, they explore certain functions or measures that are related to them. Problems from convex geometry become thereby accessible to analytic and probabilistic tools, and we can use these tools to make progress on very difficult open problems.

We discuss in this Snapshot such a functional ex- tension of some “volumes” which measure how “big” a set is. We recall the construction of “intrinsic vol- umes”, discuss the fundamental inequalities between them, and explain the functional extensions of these results.

Falls Sie diesen Schnappschuss übersetzen möchten, kontaktieren Sie uns bitte über info@imaginary.org

Mathematisches Fachgebiet

Analysis
Geometrie und Topologie

Autor(en)

Liran Rotem
Senior Editor:
Carla Cederbaum
Junior Editor:
Sophia Jahns

Lizenz

DOI (Digital Object Identifier)

10.14760/SNAP-2018-014-EN

Download PDF

PDF

snapshots: overview

Mathematisches Fachgebiet

Algebra und Zahlentheorie
Analysis
Didaktik und Bildung
Diskrete Mathematik und Grundlagen
Geometrie und Topologie
Numerik und Wissenschaftliches Rechnen
Wahrscheinlichkeitstheorie und Statistik

Verbindung zu anderen Gebieten

Chemie und Geowissenschaft
Informatik
Ingenieurwissenschaft und Technik
Finanzwesen
Geistes- und Sozialwissenschaft
Biowissenschaft
Physik
Überlegungen zur Mathematik

Diese Piktogramme sind unter der CC BY-SA 4.0 Lizenz verfügbar. Du kannst sie gern benutzen, um Deine eigenen Inhalte zu klassifizieren.
Die Vektorgrafiken können hier heruntergeladen werden.