Hiltrud Heinrich
독일의 예술가 Hiltrud Heinrich는 그녀의 작품을 수학 전시회에 사용하였습니다. 작품들은 추상적이고 미적인 본질을 담고 있습니다. 그녀는 또한 SURFER의 사진들을 복사하여 조각보의 패턴으로 사용하였습니다.
공식
- (x^2+y^2-1-x^2y^2z^2)+(x^2+y^2+z^2-3)\cdot xy^4+yx^4=0
Entsprechung (counterparts)
공식
- (y \cdot (ax^4+bxy^2+ayz* y^2)^2*(8x^2)*(z^3+ 6z^2)+(9z-25)*5x-zy^2=0 , \\ a=0.04 \quad b=1.00
Aufbruch (the burst)
공식
- (x^2+y^2+z^2-5)\cdot(x+y)^4-(x^2y^2z^2-1)=0
crab
공식
- (x^4y+x^3y^2)+(x^4y-10x^4y^3+y^3)^2-z^2\cdot((x^2+y^2+z^2-9)\cdot(b-x^3y^2z^3))=0
Bewegung (movement)
공식
- ((x^2+y^2+z^2-9)^3-x^2y^2z^2)\cdot(x^2+y^2+z^2-0.5)\cdot xy^2+yx^2+xz=0
l´être originaire dans l´oeuf
Normal
0
21
false
false
false
MicrosoftInternetExplorer4
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:”Normale Tabelle”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-parent:”“;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:”Times New Roman”;
mso-ansi-language:#0400;
mso-fareast-language:#0400;
mso-bidi-language:#0400;}
table.MsoTableGrid
{mso-style-name:Tabellengitternetz;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
border:solid windowtext 1.0pt;
mso-border-alt:solid windowtext .5pt;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-border-insideh:.5pt solid windowtext;
mso-border-insidev:.5pt solid windowtext;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:”Times New Roman”;
mso-ansi-language:#0400;
mso-fareast-language:#0400;
mso-bidi-language:#0400;}
공식
- ((x^2+y^2+z^2-10)^6+x^2y^2z^2)+(x^5+y+z+0.5)^2\cdot xy^3+yx^6+yz=0
Farbe und Linien (colour and lines)
공식
- 6x^2-2x^4-y^7z^2+x^2y^2z^2\cdot(x^2+y^2+z^3)-4=0
genmanipulierter Pfau
공식
- (x^2+y^2+z^2-3)\cdot xz^2+(x+z)^4=0
ohne Namen 2 (without a name)
Normal
0
21
false
false
false
MicrosoftInternetExplorer4
/* Style Definitions */
table.MsoNormalTable
{mso-style-name:”Normale Tabelle”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-parent:”“;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:”Times New Roman”;
mso-ansi-language:#0400;
mso-fareast-language:#0400;
mso-bidi-language:#0400;}
table.MsoTableGrid
{mso-style-name:Tabellengitternetz;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
border:solid windowtext 1.0pt;
mso-border-alt:solid windowtext .5pt;
mso-padding-alt:0cm 5.4pt 0cm 5.4pt;
mso-border-insideh:.5pt solid windowtext;
mso-border-insidev:.5pt solid windowtext;
mso-para-margin:0cm;
mso-para-margin-bottom:.0001pt;
mso-pagination:widow-orphan;
font-size:10.0pt;
font-family:”Times New Roman”;
mso-ansi-language:#0400;
mso-fareast-language:#0400;
mso-bidi-language:#0400;}
공식
- ((x^2+y^2+z^2-7.5)^3+x^2+z^2-x^2y^2z^2)+ab\cdot(x^2+y^2+z^2-0.5)\cdot xy^3+yx^4+yz=0 \\ a=0.02 \quad b=0.02
Fratze (grotesque face)
공식
- (x^4y+x^3y^2)+(x^4y-10x^4y^3+y^3)^2-z^2\cdot((x^2+y^2+z^2-9)\cdot(b-x^3y^2z^3))=0
Karneval in Venedig 2 (Venetian carnival )
공식
- (x^2+y^2+z^2-5)\cdot xyz+(x+y)^3-(x^2y^2z^2-1)+2x4y=0
Faszinierende Unterwasserwelt 1 (fascinating marine world)
Normal
0
21
false
false
false
MicrosoftInternetExplorer4
공식
- ((x^2+y^2-1)^3-x^2y^2z^2)\cdot(x^2+y^2+z^2-3)\cdot xy^3+yx^3+xz=0
Zartes Etwas 2 ( delicate something)
공식
- ((x^2+y^2+z^2-9)^3-x^2y^2z^2)\cdot(x^2+y^2+z^2-3)\cdot xy^3+yx^3+xz=0
Flugkörper (projectile)
공식
- (x^2-z^3+x^3-y^2+(y^4z)^3+x^2+z^3)\cdot((x^2+y^2+z^2)^2-9\cdot(x^2+y^2))=0
Kongresshalle (convention hall)
Normal
0
21
false
false
false
MicrosoftInternetExplorer4
공식
- 6x^2-2x^4-y^7z^2+x^2y^2z^2+(x^2+y^2+z^5)-1=0
Muster a ( pattern)
공식
- 20x^2-2x^6-y^5z^2+x^2y^2z^2\cdot(x^2+y^2+z^5)-11=0